# mei 

## CASHFLOW® 9520 / 9524 / 9528

## SELECTOR SYSTEMS

## DESIGN GUIDE



## PUBLISHED BY:

MEI CashFlow ${ }^{\circledR} 9520$ / 9524 / 9528 Design Guide
Eskdale Road
Winnersh Triangle
Wokingham
Berkshire
RG41 5AQ
United Kingdom.
Internet: http://www.meiglobal.com

For further information on editions in other languages please contact the Technical Communications Manager at the above address.

## CashFlow ${ }^{\circledR} 9520$ / 9524 / 9528 Selector Design Guide

© , Mars, Inc., 2003. All rights reserved

Except as permitted under the relevant local legislation, no part of this publication may be copied, transmitted, transcribed, or distributed in any form or by any means, or stored in a database or retrieval system, or translated in any language (natural or computer), without the prior written permission of MEI.

Mars ${ }^{\circledR}$, CashFlow ${ }^{\circledR}$ and the MEI device are registered trademarks.

MEI reserves the right to change the product or the product specifications at any time. While every effort has been made to ensure that the information in this publication is accurate, MEI disclaims any liability for any direct or indirect losses (howsoever caused) arising out of use or reliance on this information.

This document does not necessarily imply product availability.

This edition (March 2003) Printed in the United Kingdom.

Note: Your product may differ slightly from some of the illustrations in this document.

## CONTENTS

SAFETY .....  .5
WARNING ..... 5
Caution ..... 5
Maximum Operating Voltage ..... 5
Dangerous Environments ..... 5
Disposal of Product. ..... 5
CONFORMANCE TO INTERNATIONAL STANDARDS .....  5
PRODUCT IDENTIFICATION ..... 6
Product Options; Front Plates ..... 7
Product Options; Reject Covers ..... 8
Product Build Options .....  9
DESCRIPTION \& OPERATION ..... 11
Coin Entry (1) ..... 12
Diagnostic ‘Bi-Colour’ LED (2) ..... 12
I-Button Memory Contacts (3) ..... 12
Support Tool Connector (CPM) (4) ..... 12
Route Inhibit Connector (5) ..... 12
Serial Interface Connector (HII) (6) ..... 12
SEPARATOR CONNECTOR (7), ..... 12
8 WAy DIP sWITch (8) ..... 12
Post-Gate Strobes (9) ..... 13
Dual Polarity and BCO Interface Connector (10) ..... 13
Pre-Gate Strobes (11) ..... 13
Validator Lid (12) ..... 13
PRODUCT INTERFACES ..... 14
Standard Interfaces ..... 14
Parallel Mode ..... 14
Multi-Pulse ..... 14
Coin validation Inhibits A, B, C, D, E, F ..... 14
PARALLEL OUTPUT MODE INHIBITS ..... 14
Coin Output Common Line. ..... 14
Binary Coded Output (BCO) - UK ..... 15
Binary Coded Output (BCO) - Euro ..... 15
Coin Validation Inhibits A, B, C, D, E, F ..... 17
Binary Coded Output Mode Inhibits - UK ..... 17
Binary Coded Output Mode Inhibits - Euro ..... 17
Automatic Mode - Parallel or BCO Selection ..... 18
Mechanical ..... 18
ELECTRICAL INTERFACES ..... 19
Introduction ..... 19
Connector 1, Machine Interface ..... 19
Separator Connector (2) ..... 20
Route Input Lines - Routes 1-7 ..... 20
MACHINE INTERFACE CONNECTOR (CONNECTOR 1) ..... 21
DYNAMIC ROUTE INHIBIT (CONNECTOR 4) ..... 21
Support Tool Connector (6-way) ..... 22
SERIAL ( $\mathrm{HI}^{2}$ ) CONNECTOR ( 10 - WAY). ..... 22
ROUTING CONFIGURATION ..... 23
Coin Routing Priority ..... 23
CONNECTOR 4, Dynamic Route Inhibit ..... 24
Y-CHUTE Interface Connector ..... 25
Dual Entry System ..... 26
ELECTRICAL SPECIFICATION ..... 27
Coin Output Electrical Specification ..... 27
Absolute Maximum Ratings ..... 27
Output Common Specification ..... 28
Positive Common Voltage Range ..... 30
Negative Common Voltage Range ..... 31
Negative Common Outputs: ..... 31
Binary Coded Output (BCO) ..... 31
Coin Inhibits ..... 31
MECHANICAL INTERFACE DRAWINGS ..... 32
CF9524 Front Plate Dimensions ..... 32
CF9524 Top Entry Mounting Space Envelope ..... 32
CF9528 Long Channel Mounting Space Envelope ..... 32
COMPATIBILITY ..... 40
PERFORMANCE STANDARDS ..... 41
Power Supply ..... 41
Compliance Classifications. ..... 41
Flammability ..... 41
Power Supply Input Protection ..... 42
Mechanical Parts ..... 42
Coin Sizes ..... 42
Coin Acceptance Rate ..... 42
ENVIRONMENTAL PERFORMANCE ..... 43
TEMPERATURE RANGE ..... 43
Humidity Range ..... 43
TEMPERATURE / HUMIDITY SPECIFICATION ..... 43
THERMAL SHOCK ..... 44
TRANSPORTATION ..... 45
PRODUCT SUPPORT ..... 46

## SAFETY

## Warning

Before cleaning, servicing, removing or replacing CashFlow ${ }^{\circledR}$ units ALWAYS SWITCH OFF or ISOLATE the ELECTRICITY SUPPLY to the host machine.

## Caution

This guide is recommended for use by personnel trained to carry out electrical installation.

## Maximum Operating Voltage

Do not apply more than the voltage specified on the unit, and within the following:

Full Operating Voltage range: $\quad+10 \mathrm{~V}$ to $+15 \mathrm{~V} \mathrm{DC}(+12 \mathrm{~V}$ nominal)

Supply Voltage Ripple:
Current consumption:

Within Vmin to Vmax up to 100 Hz , $<250 \mathrm{mV} \mathrm{pk}$ - pk for Frequency>100Hz

- Quiescent current: 100mA Max
- Max current: 3A Max
(4 solenoids active, Cashflow ${ }^{\circledR} 9524$ )


## Dangerous Environments

Do not operate the unit in the presence of flammable gasses or fumes, or after the entry of fluid into the machine.

## Disposal of Product

Always dispose of defective units according to local regulations.

## Conformance to International Standards

When installed and operated according to the instructions provided for the particular unit, CashFlow ${ }^{\circledR}$ products meet the applicable international and national safety standards for any country in which they are used.

## SAFETY

All electrical connections to the product must be rated according to the requirements for "Accessible SELV" circuits as defined in EN60335-1. The product is therefore suitable for use in a class 2 (non-earthed or non-grounded) appliance.
Overcurrent protection is not included in the product and should be provided as part of the host machine. The recommended fuse value at the rated supply of 12 V is:

## 3A Slow blow (to EN60127)

Other protection methods may be used providing their overcurrent characteristics remain within the overall operating characteristics of the above fuse.
Warning: This is a class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

## PRODUCT IDENTIFICATION

MEI has manufactured coin mechanisms compatible with gaming and amusement machines for a number of years. Over this time the functionality of the range has been enhanced to match the market needs and whilst maintaining mechanical compatibility.
The products detailed in this handbook relate to the CashFlow ${ }^{\circledR} 952 x$ Series. To ensure you have the right product for your application please read this section.


CashFlow ${ }^{\circledR} 9520$

- Supports 4 way Separator (optional)
- Supports 8 way Separator (optional)
- Available as Side Entry or Top Entry


CashFlow ${ }^{\circledR} 9524$

- Comprising of CashFlow 9520 plus
- 4 way Separator, available as Side Entry, Top Entry or System Product


CashFlow ${ }^{\circledR} 9528$

- Comprising of CashFlow ${ }^{\circledR} 9520$ plus
- 8 way Separator, available as Top Entry or System Product


## Product Options; Front Plates



This model has a brushed stainless steel front plate suitable for external surface mounting.
It is supplied complete with a coin catcher hoop, a coin entry bezel and a coin mechanism mounting plate assembly.

This front plate is made of mild steel painted black and is a standard assembly suitable for internal mounting.
It is not supplied with a coin catcher hoop.

This model consists of the same parts as the 7804 except that the black mild steel front plate is wider and slightly shorter.

This is the basic coin mechanism mounting plate assembly made from clear polycarbonate. It is supplied with the standard coin entry bezel assembly.

## Product Options; Reject Covers



## Product Build Options

Each product variant is made from the following components:
Side Entry Product


## Top Entry Product



## DESCRIPTION \& OPERATION



## Coin Entry (1)

There are two types of coin entry available. Top entry and Side entry.

- Top entry: The validator is mounted into the Channel and Coins enter through to top of the validator.
- Side Entry: The validator is mounted onto the front plate and coins enter through the side of the validator.


## Diagnostic ‘Bi-Colour’ LED (2)

The bi-colour LED displays a sequence of flash codes to indicate the current operation status of the validator, and can be used for fault diagnosis when inserting a coin or when in teaching functions.

| Flash Code Sequence: | Description: |
| :--- | :--- |
| Constantly ON | Validator power on. |
| 1 Flash | Coin accepted / Reject lever pressed. |
| 2 Flashes | Coin not recognised and rejected. |
| 3 Flashes | Coin rejected by validator. |
| 4 Flashes | Coin recognised but not accepted (due to inhibit setting). |

## i-Button Memory Contacts (3)

This connector enables the i-button to communicate with the product. i-button activity is indicated by the illumination status of the LED.

## Support Tool Connector (CPM) (4)

This 6-way connector is used for a MEI Support Tools, such as the CPM (CashFlow ${ }^{\circledR}$ programming Module).

## Route Inhibit Connector (5)

This is a 9-pin connector that provides input from the machine to the validator. Its function is to modify coin routing. When a specific exit is full, the host machine will signal to the validator to redirect subsequent coins to an overflow route.

## Serial Interface Connector (HII) (6)

This 10-pin connector provides a serial interface to an HII interface.

## Separator Connector (7),

This connector is used to connect the validator to the separator.

## 8 Way DIP switch (8)

This switch is used as an easy configuration tool for the product. The 8 -way switch can be used to change common settings such as enabling/inhibiting coins and setting coin routing.

## Post-Gate Strobes (9)

The strobes are used to detect the direction \& presence of coins passing through the validator.

## Dual Polarity and BCO Interface Connector (10)

When in NON SERIAL mode, this interface is used to connect to the host machine. The functions provided are:

- Coin outputs A, B, C, D, E, F.
- Coin inhibits A, B, C, D, E, F.
- Coin common output
- Output mode selection

The acceptor will operate in one of two Coin Output modes:

- Parallel - can be positive or negative common
- Binary Coded Output (BCO)

These will be automatically selected by the "Output mode select" line, if nothing is connected to the output line then the acceptor will default to parallel mode.

## Pre-Gate Strobes (11)

This is an integral part of the validator which detects obstructions around the accept gate. If an obstruction is detected then coin acceptance is inhibited.

## Validator Lid (12)

This lid opens outwards when the reject lever is pressed. It allows for clearance of coins jams and also provides access for cleaning the coin entry paths. It is also used in some product configuration modes.

## Reject Lever (13)

This lever can be pressed to clear any coins that might have got stuck inside the validator lid.

## PRODUCT INTERFACES

## Standard Interfaces

The standard interfaces available on CashFlow ${ }^{\circledR}$ 9520/9524/9528 validators are Parallel and Binary Coded Output (B.C.O.). The validator is supplied in Automatic Mode which senses the type of interface selected by the host machine via pin 8 (Output Mode Select) of the machine interface connector.

## Parallel Mode

This type of interface is a standard 6 coin parallel output interface as used in the ME126/129 products (Dual Polarity).

The coin outputs for A and C can be combined (e.g. A + C, B, D, E, F) to give compatibility with ME126 validators and can be set by programming the validator. The coin outputs are factory defined.

If an alarm condition occurs all coin outputs will be activated simultaneously for $>600 \mathrm{~ms}$.

## Multi-Pulse

This will only operate when in parallel mode. This factory set option will pulse the GB 50p coin output (of a GB profile) four times on validation of a GB £2 coin.

## Coin validation Inhibits A, B, C, D, E, F

To inhibit coin acceptance the CashFlow ${ }^{\circledR}$ validator offers six individual inhibit inputs. These inhibits operate differently for each mode as detailed in the following section.

## Parallel Output mode inhibits

The channels that activate the associated coin output will be inhibited when the inhibit is held High or no connection is made to the relevant input, (e.g. Inhibit A will inhibit coin output A channels).

## Coin Output Common Line

This line allows for operation with positive or negative common systems. The interface selfconfigures by sensing the output common voltage supplied by the machine on the coin output common line, (pin 2 for a 15 way machine interface connector, or pin 3 for a 17 way connector).
All potentials are relative to the 0 V return line to the machine. (Pin 11 for a 15 -way connector and pin 12 for a 17-way machine interface connector).
Negative common operation is selected when pin 2 output common is between 0 V to +1.0 V . Positive common is selected when pin 2 is greater than +7.0 volts (Max 12V) with respect to pin 11.

## Binary Coded Output (BCO) - UK

Defined by the validator coin output map. When in BCO mode coin output A is permanently set active to indicate to the host machine that the BCO feature is set.

Coin output A will have a high impedance (approx. 1 M Ohm to 0 v ) if coin output common is allowed to float. If an alarm condition occurs, coin outputs B, D, E and F will be activated.

| (BCO - UK) Coin Output |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enabled Outputs | Coins | A | B | C | D | E | F |
|  | 5p | 1 | 0 | 1 | 0 | 0 | 0 |
|  | 10p | 1 | 1 | 1 | 1 | 0 | 0 |
|  | 20p | 1 | 0 | 1 | 0 | 1 | 1 |
|  | 50p (Old) | 1 | 1 | 1 | 0 | 0 | 1 |
|  | 50p (New) | 1 | 0 | 1 | 1 | 0 | 1 |
|  | £1 (1983) | 1 | 1 | 1 | 0 | 1 | 0 |
|  | £2 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Token | 1 | 0 | 1 | 1 | 1 | 0 |
| Alarm Output |  | 1 | 1 | 0 | 1 | 1 | 1 |

## Binary Coded Output (BCO) - Euro

## Gaming

The BCO codes operate in a similar way to those used in the UK. Coin output $A$ is active to indicate to the machine that the Acceptor is in BCO Mode. Coin output C is active when a correct code is given to the machine. This effectively becomes the check used by the machine to authenticate that a current shown code is correct. If this value is not active then the machine will ignore the codes. B, D, E and F become the 4 code states indicating which coin is accepted.

| (BCO - EURO) Coin Output |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coin <br> No. | Value | A | B | C | D | E | F |  |
| Coin 1 | Token 1 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| Coin 2 | Token 2 | 1 | 0 | 1 | 0 | 0 | 1 |  |
| Coin 3 | 1c | 1 | 0 | 1 | 0 | 1 | 0 |  |
| Coin 4 | $2 c$ | 1 | 0 | 1 | 0 | 1 | 1 |  |
| Coin 5 | $5 c$ | 1 | 0 | 1 | 1 | 0 | 0 |  |
| Coin 6 | 10 c | 1 | 0 | 1 | 1 | 0 | 1 |  |
| Coin 7 | 20 c | 1 | 0 | 1 | 1 | 1 | 0 |  |
| Coin 8 | 50 c | 1 | 0 | 1 | 1 | 1 | 1 |  |
| Coin 9 | 1 Eu | 1 | 1 | 1 | 0 | 0 | 0 |  |
| Coin 10 | 2 EU | 1 | 1 | 1 | 0 | 0 | 1 |  |
| Coin 11 | 5 Eu | 1 | 1 | 1 | 0 | 1 | 0 |  |

## Vending

The BCO codes operate in a similar way to those used in Italy. Coin output $A$ is active to indicate to the machine that the Acceptor is in BCO Mode. Coin output E is active when a correct code is given to the machine. This effectively becomes the Parity used by the machine to authenticate that a current shown code is correct. This should be used in Even Parity. Coin outputs B, C, E and D become the 4 code states indicating which coin is accepted.

| (BCO - EURO) Coin Output |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Coin <br> No. | Value | A | B | C | F | D | E |
| Coin 1 | 1c | 1 | 1 | 0 | 0 | 0 | 1 |
| Coin 2 | 2c | 1 | 0 | 1 | 0 | 0 | 1 |
| Coin 3 | 5 c | 1 | 1 | 1 | 0 | 0 | 0 |
| Coin 4 | 10 c | 1 | 0 | 0 | 1 | 0 | 1 |
| Coin 5 | 20c | 1 | 1 | 0 | 1 | 0 | 0 |
| Coin 6 | 50 c | 1 | 0 | 1 | 1 | 0 | 0 |
| Coin 7 | 1Eu | 1 | 1 | 1 | 1 | 0 | 1 |
| Coin 8 | 2EU | 1 | 0 | 0 | 0 | 1 | 1 |
| Coin 9 | 5Eu | 1 | 1 | 0 | 0 | 1 | 0 |

## Coin Validation Inhibits A, B, C, D, E, F

To inhibit coin acceptance the CashFlow ${ }^{\oplus}$ validator offers six individual inhibit inputs.
These inhibits operate for each mode as detailed in the following text.

## Binary Coded Output Mode Inhibits - UK

The channels inhibited, for a given inhibit line becoming active are factory set by the validator coin inhibit map option. When inhibit (A to $F$ ) is active, then coins for the channels specified in the map will be inhibited. The default settings for the GB profile are:

| Inhibit Line | Coins inhibited |
| :---: | :---: |
| A | $£ 2$ |
| B | Token |
| C | Reserved |
| D | $20 p$ |
| E | $5 p, 10 p, 50$ p old \& new |
| F | $£ 1$ |

## Binary Coded Output Mode Inhibits - Euro

| (BCO - EURO) Coin Inhibit |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coin <br> No. | Value | A | B | C | D | E | F |  |
| Coin 1 | Token 1 |  | 1 | X |  |  |  |  |
| Coin 2 | Token 2 |  | 1 | X |  |  |  |  |
| Coin 3 | 1c | $1^{*}$ |  | X |  |  |  |  |
| Coin 4 | 2c | $1^{*}$ |  | X |  |  |  |  |
| Coin 5 | 5 c | $1^{*}$ |  | X |  |  |  |  |
| Coin 6 | 10 c | $1^{*}$ |  | X |  |  |  |  |
| Coin 7 | $20 c$ | $1^{*}$ |  | X |  |  |  |  |
| Coin 8 | 50 c |  |  | X | 1 |  |  |  |
| Coin 9 | 1 Eu |  |  | X |  | 1 |  |  |
| Coin 10 | 2 EU |  |  | X |  |  | 1 |  |
| Coin 11 | 5 Eu | $1^{*}$ |  | X |  |  |  |  |

X= RESERVED<br>* = GROUPED INHIBIT INPUT

## Automatic Mode - Parallel or BCO Selection

In this mode the status of the output mode input (on pin 8 of the 17 -way connector, or pin 7 for the 15 -way connector of the machine interface) selects either the parallel or the binary coded output interface standards.
A logic high signal to this pin will select parallel mode, setting pin 8 to a logic low will select BCO mode. If there is no connection made to pin 8 the interface will default to parallel mode.

## Mechanical

Interface connections are via a 17-way header from the standard PCB. This header is single row of 17 pins on a 0.1 inch x 0.1 -inch grid, with a pin size of 0.025 -inch square. The complete interface connector (connector 1) functions are shown on the next page.

## ELECTRICAL INTERFACES

## Introduction

This section gives the pin assignments for all connector interfaces used on the CashFlow ${ }^{\circledR}$ validators and it also includes timing diagrams of the signals appearing on the input and output lines.

## Connector 1, Machine Interface.

The interface to the validator from the machine is exactly the same as those that apply to the MS/ME series validators, with the exception of pin 8 of the 17-way connector.
Connector 1 can accept either 15 pin or 17 pin interface connectors.

| 17 Way Connector | 15 Way Connector | Functions (Dual Polarity) | GB <br> Coins | Input or Output | PIN <br> No. | BCO Function Definition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | A Coin Output | 5p | 0 | 1 | Ident signal |
| 2 | 1 | B Coin Output | Token | 0 | 2 | Accept Output 5 |
| 3 | 2 | Coin Output Common |  | 1 | 3 | Accept Output Common |
| 4 | 3 | F Coin Output | £1 | 0 | 4 | Accept Output 1 |
| 5 | 4 | Polarising Key 1 |  | - | 5 | Polarising Key |
| 6 | 5 | E Coin Output | $\begin{gathered} 50 \mathrm{p} \\ (£ 2=x 4) \end{gathered}$ | 0 | 6 | Accept Output 2 |
| 7 | 6 | D Coin Output | 20p | 0 | 7 | Accept Output 3 |
| 8 | 7 | Output Mode Select |  | I | 8 | Select Line (Output mode) |
| 9 | 8 | C Coin Output | 10p | 0 | 9 | Accept Output 4 |
| 10 | 9 | C Coin Inhibit |  | 1 | 10 | Inhibit 4 |
| 11 | 10 | +12V Supply |  | 1 | 11 | +12V Supply |
| 12 | 11 | OV Supply |  | 1 | 12 | OV Supply |
| 13 | 12 | D Coin Inhibit |  | 1 | 13 | Inhibit 3 |
| 14 | 13 | E Coin Inhibit |  | 1 | 14 | Inhibit 2 |
| 15 | 14 | F Coin Inhibit |  | 1 | 15 | Inhibit 1 |
| 16 | 15 | B Coin Inhibit |  | 1 | 16 | Inhibit 5 |
| 17 | - | A Coin Inhibit |  | 1 | 17 | Inhibit 6 |

Connector types used:- 15 Way Molex SIL 6471 or 17 Way Molex SIL 6471.

## Separator Connector (2)

This connector is used for connection to the CashFlow ${ }^{\circledR} 9524$ 4-way or CashFlow ${ }^{\circledR} 9528$ 8way separators only. This is identified by a grey panel on the separator.

Connector type used:- 20 way Molex DIL 901-42-0020.
WARNING: Do not connect ME129, ME126 Active or ME126 Security separators to this product or damage may result. This is identified by a panel that has the facility to fit a route plug into the separator.

## Route Input Lines - Routes 1-7

The CF9528 exit routes are marked as Route (1, 2, 3, 4, 5, 6 \& 7) with (8) being the default exit route, as standard.
Routes 1-7 on CF9528 refer to the coin routes 1 to 7 , with 1 having high priority and 7 low priority.
Routes 1-7 on CF9524 refer to the 4 coin route outputs $A, B, C$ and $D$ as shown in the following table.

Note: ( d ) is the same route as D but has a higher priority.
The CF9528 exit routes are marked as Route (1, 2, 3, 4, 5, 6 \& 7) with (8) being the default exit route.

| Solenoid 3 | Solenoid 2 | Solenoid 1 |  | 9528 Route | 9524 Route |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 |  | 1 | (d) |
| 1 | 1 | 1 |  | 2 | (c) |
| 1 | 0 | 0 |  | 3 | (a) |
| 1 | 0 | 1 |  | 4 | (b) |
| 0 | 1 | 1 | 5 | C |  |
| 0 | 1 | 0 | 6 | D |  |
| 0 | 0 | 1 | 7 | B |  |
| 0 | 0 | 0 | 8 | A |  |

## Machine interface connector (Connector 1)

Interface connections are via a 17-way header from the standard PCB. This header is a single row of 17 pins on a 0.1 inch grid. The pin size is 0.025 inch square. Figure 1 shows the interface connector and pin out

Figure 1


| 1 | Output Coin A |
| :--- | :--- |
| 2 | Output Coin B |
| 3 | Output Common |
| 4 | Output Coin F |
| 5 | n.c. |
| 6 | Output Coin E |
| 7 | Output Coin D |
| 8 | Output Mode Select |
| 9 | Output Coin C |
| 10 | Inhibit Coin C |
| 11 | Power in +12v |
| 12 | Ground (Ov) |
| 13 | Inhibit Coin D |
| 14 | Inhibit Coin E |
| 15 | Inhibit Coin F |
| 16 | Inhibit Coin B |
| 17 | Inhibit Coin A |

## Dynamic route inhibit (Connector 4)

Route inhibit connections are via a 9 -way header from the standard PCB. This header is a single row of 9 pins on a 0.1 inch grid. The pin size is 0.025 inch square. Figure 2 shows the interface connector and pin out.

Figure 2


| 1 | Full 1 |
| :--- | :--- |
| 2 | Full 2 |
| 3 | Full 3 |
| 4 | Full 4 |
| 5 | Full 5 |
| 6 | Full 6 |
| 7 | Full 7 |
| 8 | n.c. |
| 9 | Ground (Ov) |

Full $=0$ to 1.0 V wrt pin 9
Empty $=+3.5 \mathrm{~V}$

## Support Tool Connector (6-way)

This connector can be found on the front of the acceptor and is used to reconfigure the validator using a MEI support tool e.g. (CPM) CashFlow ${ }^{\circledR}$ Programming Module.

## Serial ( $\mathrm{HI}^{2}$ ) Connector (10-way)

The position of this connector has been moved from the previous CF126 product and can now be found on the front face of the CF95xx. This provides easier access.

| Function | PIN | 10 Way Connector | PIN | Function |
| :---: | :---: | :---: | :---: | :---: |
| DATA | 1 | $\bullet \bullet$ | 2 | GND |
| BUSY | 3 |  | 4 | GND |
| RESET | 5 |  | 6 | NC. |
| VIN (12V) | 7 |  | 8 | VNEG (0V) |
| NC. | 9 | $\rightarrow 0$ | 10 | VSOL |

10-way $\mathrm{Hi}^{2}$ serial connections

## ROUTING CONFIGURATION

The CF9524 exits routes are marked as (B, C \& D) with (A) being the default exit route


CF9524 4-WAY SEPARATOR
Default Route $=A$


CF9528 8-WAY SEPARATOR
Default Route $=8$


Viewed from the top of the manifold assembly


Default Route

## Coin Routing Priority

The CashFlow ${ }^{\circledR} 9524 / 9528$ differs from the CF 126/129 with regard to coin routing priority. Coins can be routed to any exit as primary and secondary route. The product defines the exit depending on the type being set as primary or secondary.

Example: If the chosen Primary Route = (a), the only Secondary routes available can only be (b), C, D or B. Therefore (d) and (c) cannot be used as a secondary route.

CF9528 8-WAY
SEPARATOR
Default Route $=8$


| Coin Route Priority |  |
| :---: | :---: |
| 1 | Highest |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| - | Lowest |

The CF952x Series can support two types of separator, a 4-way and an 8-way.

## Connector 4, Dynamic Route Inhibit

This input from the host machine to the front reject cover of the validator is known as the Dynamic Route Inhibit. This inhibit signal indicates that a specific route has become full. To Inhibit a route the relevant pin should be grounded (i.e. active low to inhibit a route).

Connector type used:- 9 pin SIL - AMP 925366.

| Route Inhibit Connector <br> Pin No. | CF9528 <br> 8 Way Separator Exit Route | CF9524 <br> 4 Way Separator Exits |
| :---: | :--- | :--- |
| 1 | Route 1 | Exit (d) $=1$ |
| 2 | Route 2 | Exit (c ) = 2 |
| 3 | Route 3 | Exit (a) $=3$ |
| 4 | Route 4 | Exit (b) = 4 |
| 5 | Route 5 | Exit C = 5 |
| 6 | Route 6 | Exit D = 6 |
| 7 | Route 7 | Exit B = 7 |
| 8 | Route 8 is the Default | Exit A is the Default |
| 9 | Ground (0v) | Ground (0v) |

Note: Care must be taken to apply a Route full signal to the correct pin. For example of Exit D is selected then the signal should be directed to Pin 6 (D). Likewise Pin 1 (d) should be used of Primary Route (d) is selected.

## Y-chute Interface Connector

Connections to the Y -chute are made with a Molex type 6471 19-way. This connector is fitted to the dual entry (coin and token) system only. It provides an interface for the machine to inhibit acceptance of any coin/token and also gives a signal to the validator to inhibit coins during token input and to inhibit tokens during coin input.
This interface is not supplied with the single entry system.

| Pin No. | Function | Input / Output | Notes |
| :---: | :---: | :---: | :---: |
| 1 | 12 Volts | Output | 12 volts supply to the validator |
| 2 | Inhibit F | Output | Inhibit signals to the validator |
| 3 | Inhibit E | Output |  |
| 4 | Inhibit D | Output |  |
| 5 | Inhibit C | Output |  |
| 6 | Polarisation | - | - |
| 7 | Inhibit B | Output | Inhibit signals to the validator |
| 8 | Not Used | - | - |
| 9 | Not Used | - | - |
| 10 | 0 Volts | Output | 0 volts common to the validator |
| 11 | 0 Volts | Input | 0 volts common input to Y-chute |
| 12 | Polarisation | - | - |
| 13 | Not Used | - | - |
| 14 | Inhibit B | Input | Inhibit signal from the machine |
| 15 | Inhibit C | Input |  |
| 16 | Inhibit D | Input |  |
| 17 | Inhibit E | Input |  |
| 18 | Inhibit F | Input |  |
| 19 | 12 Volts | Input | 12 volts input to the Y-chute |

## Dual Entry System

In dual entry systems the Y -chute forms the interface between the validator, Y -chute and the machine. The latter uses the Y -chute interface and the validator interface as its main connection points. The coin outputs are signalled from the validator interface.
The coin inhibits are connected to the Y-chute interface and the inhibit signals are fed back to the validator interface by the host machine interface wiring, as shown below.

## Dual Entry System ( Coin and Token )



With single entry systems the interface is between the validator and the machine only, with no electronics fitted to the Y -chute.

## Single Entry System ( Coin Only )



NOTE: When an old, (pre-March 1997), Y chute is used with a BACTA standard machine interface ( BCO ) the mode of operation of the Y chute needs to be changed. (Consult with MEI technical support for further details).

## ELECTRICAL SPECIFICATION

Voltage Range
Current Consumption;

12V (+ 3V maximum, -2V minimum)
Quiesent (Idle) -35mA
Coin Flight - 65 mA
Accept Gate only - 800 mA
2 Routing Solenoids $-2,300 \mathrm{~mA}$ for 320 mS
3 Routing Solenoids - 3000 mA for 320 mS

## Coin Output Electrical Specification

Logical Outputs


## Output Circuit Block Diagram

## Absolute Maximum Ratings

Output Current
(O/PA) - F) $\pm 30 \mathrm{~mA}$
Maximum Voltage
(O/PA) - F) $\pm 32 \mathrm{~V}$ w.r.t. 0 V

## Output Common Specification



## Sample multiplexed implementation - Negative Common Strobe

Output common can be left floating for multiplexed implementations. However the minimum turn on time when output common was floating is 15 micro seconds. If the polarity is established on output common by means of a weak pull up (for -ve com) or pull down (-ve com) the turn on time can be reduced. In the case above, the maximum time from the output common being strobed to the output being true is approximately 1 micro second. See the diagrams below for sample multiplexing implementation.
If output common is changed form negative to positive common (or vice versa) during polling, the state of any coin output cannot be guaranteed for 15 us.

## Output Timings

## Negative Common



BCO Mode is indicated by the A output being permanently active. This indicator can take up to 100 milliseconds to be established from power up. In order to ensure reliable operation of the host machine (i.e. coin mech. might be changed without powering down) the state of this output should be regularly polled. As long leads are often involved in a coin mechanism interfaces, it is recommended that the input should be de-bounced in software to avoid glitches.

## BCO Output Indication



Coin Inhibits
High = Coin inhibit
Low = Coin enable

Maximum input voltage to enable channels (logic 0)
Minimum input voltage to inhibit channels (logic 1)
Input impedance
$<1.0 \mathrm{~V}$
$>4.0 \mathrm{~V}$
12Kohms to +5 v .

## Positive Common Voltage Range

## Positive Common Operation (O/P Common)

This interface is selected when pin 3 is greater than +4.5 volts with respect to pin 12. (0V) Output Common Voltage:

$$
+7 \text { volts to }+26 \text { volts with respect to pin } 12 .
$$

## Positive Common Outputs:

On:
Maximum current $=40 \mathrm{~mA}$
Saturation voltage (Output common - Coin $\mathrm{O} / \mathrm{P}$ ) $<1.5 \mathrm{~V}$
Off:
Pulse Width:
10uA maximum at +27 volts (Output common - Coin O/P)
Switched on for between 80 and 120 ms on acceptance of appropriate coin.


BCO Output Indication from "Power ON"

## Negative Common Voltage Range

This interface is selected when pin 3 is $<2.5 \mathrm{~V}$ with respect to pin 12. (0V)

## Negative Common Outputs:

On: Maximum current $=30 \mathrm{~mA}$
O/P saturation voltage (Coin O/P - Opcom) <1.5V
Off: 10 uA maximum at 27 volts (Coin O/P - OPcom)
Pulse Width: Switched on for between 80 and 120 ms
on acceptance of the appropriate coin.


## Binary Coded Output (BCO)

BCO mode is indicated by the A output being permanently active. This indicator can take up to 100 milliseconds to be established from power up.

In order to ensure reliable operation of the machine the state of this output should be regularly polled (as the coin validator could be reconfigured without the power being removed).

As there are often long machine interface leads involved in coin mechanism interfaces, it is recommended that the coin outputs should be de-bounced in software to reduce the effect of glitches.

## Coin Inhibits

```
Input voltage to enable channels (logic 0) ) <1.0V
Input voltage to inhibit channels (logic 1) >4.0V
Input impedance
    12 Kohms to +5v.
```


## MECHANICAL INTERFACE DRAWINGS

The following drawings are included in this section:

## CF9524 Front Plate Dimensions

Drawing Number 32780 Front plate mounting detail.
Drawing Number 32799 Standard front plate dimensions.
Drawing Number 35811 Side entry space envelope.

## CF9524 Top Entry Mounting Space Envelope

Drawing Number 35812.

## CF9528 Long Channel Mounting Space Envelope

Drawing Number 35824 Long channel dimensions.
Drawing Number 35954 CF9528 system installation dimensions. - (Fitted with Long manifold)
Drawing Number 35961 CF9528 system installation dimensions. - (Fitted with Short manifold).








## COMPATIBILITY

Previously Used New Product<br>Equivalent

CashFlow ${ }^{\circledR} 111$ \&

- CashFlow ${ }^{\circledR} 9520$


CashFlow ${ }^{\text {® }} 115$


CashFlow ${ }^{\circledR} 126$
CashFlow ${ }^{\oplus} 9524$


CashFlow $^{\circledR} 129 \rightarrow$ CashFlow $^{\circledR} 9528 \rightarrow$


## PERFORMANCE STANDARDS

## Power Supply

Full Operating Voltage range:
Supply Voltage Ripple:

Current consumption:
+10 V to +15 V DC (+12V nominal)
Within Vmin to Vmax up to 100 Hz , $<250 \mathrm{mV} \mathrm{pk}$ - pk for Frequency>100Hz

- Quiescent current: 120mA Max
- Max current: 3A Max
( 4 solenoids active, Cashflow ${ }^{\circledR} 9528$ )


## Compliance Classifications

The product is designed to the following standards for sale into European markets and will carry the "CE" mark.

## Electromagnetic Conformance (EMC)

The product is designed to comply with the following European standards:

## EN50082-1 1992 Electromagnetic Compatibility Generic Immunity Standard

EN55022 1995 Limits and methods of measurement of radio disturbance characteristics of information technology equipment.

## Safety

The product is intended for use in machines that are designed to comply with;
a) EN60335-1, 3rd Edition, Safety of household and similar electrical appliances, Part 1, General Requirements."
b) BS3456, Safety of household and similar electrical appliances, Part 1, General Requirements.
c) BS EN60950 1992, Safety of Information Technology Equipment, including electrical business equipment.
The product is suitable for use in a class 2 (non-earthed or non-grounded) appliance as defined in EN60335.

All electrical connections to the acceptor must be rated according to the requirements for "Accessible SELV" circuits as defined in EN60335.

When used in applications where compliance to BS EN60950:1992 is necessary, the host machine power supply must additionally meet the requirements for SELV limited power supplies as defined in BS EN60950. For these applications, the coin mechanism should be installed so that it is external to any fire enclosure.

## Flammability

All major plastic parts will be moulded in materials with a flammability rating of $94 \mathrm{~V}-2$ / IEC 707 FV2 or better. Some small parts are moulded in materials with a flammability rating of 94 HB / IEC 707 FH2.

## Power Supply Input Protection

Overcurrent protection is not included in the product and must be provided as part of the machine.
Recommended fuse rating at the rated supply of 12 V is:

## 3A SIow blow EN60127

Other protection methods may be used providing their over current characteristics remain within the overall operating characteristics of the above fuse.

## Mechanical Parts

The product will not contain mechanically moving parts, or sharp edges, which can prevent a hazard in normal use.

## Coin Sizes

CashFlow ${ }^{\circledR} 9524$ and CashFlow ${ }^{\circledR} 9528$ will be able to validate and route coins within the following range:
Circular coins, in the range 15 mm to 31.5 mm in diameter.
Circular coins, in the range 1.1 mm to 3.2 mm in thickness.
Faceted coins within the relevant coinsets will also be handled.
Damaged, bent or very distorted coins may not be validated.

## Coin Acceptance Rate

The acceptor will validate coins at up to 3 coins per second, when linearly separated i.e. $>330 \mathrm{~ms}$ apart. After a coin has been rejected, no further coins will be accepted for a period of 0.5 seconds. Should a further coin be entered during this period, the reject period will be reinitiated.

## ENVIRONMENTAL PERFORMANCE

## Temperature Range

Normal operational range $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Full operational range $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Storage range $-10^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Max. rate of change $10^{\circ} \mathrm{C} / \mathrm{hr}$, non condensing

## Humidity Range

Operational $10 \%$ RH - $90 \%$ RH, non condensing
Storage $5 \%$ RH to $95 \%$ RH, non condensing

## Temperature / Humidity specification



Temperature ${ }^{\circ} \mathrm{C}$

- $\mathrm{N}=$ Normal operating range
- $F=$ Full operating range
- $S=$ Storage range


## Thermal shock

Sudden changes of temperature may cause temporary degradation of performance. For continuous operation and specified performance within the full operational temperature range, the rate of change of temperature should not be greater than $10^{\circ} \mathrm{C}$ per hour, non condensing

- Vibration (through machine mounting)
- Vibration 0.25 g at 5 Hz to 500 Hz - pseudo random, flat bandwidth
- Coin validation will not be affected.


## TRANSPORTATION

The following apply to fully packaged units:

| Shock | Half sine, 30 g shock, 18 ms dur |
| :--- | :--- |
|  | BS 2011 Part $2.1 \mathrm{EA}: 1977$ |
| Bump | 1000 bumps 6 ms duration at 25 g |
| Drop - Free Fall | BS 2011 Part $2.1 \mathrm{~b}: 1977$ |
| Drop and Topple | 2 drops from 1 m onto each face |
|  | BS 2011 Part $2.1 \mathrm{ED}: 1977$ |
|  | 50 mm drop onto each corner |
|  | BS2011 Part $2.1 \mathrm{EC}: 1977$ |

## PRODUCT SUPPORT

In addition to the MEI offices around the world an international network of Distributors and Approved Service Centres can offer you technical support and other services as well.
These services include repairs, re-programming of your Cashflow ${ }^{\circledR}$ products with new coinsets, replacing damaged modules, and the supply of a range of spare parts.

## FRANCE

G.T.I.

Parc d'activité EUROPARC
135 Chemin des Bassins
94043 CRETEIL Cedex
Tel: +33 (0) 156712020
Fax: +33 (0) 156712039
G.T.I.

Zae Loire-Longue
Jumelles, 49160 LONGUE-JUMELLES
Tel: +33 (0) 241537000
Fax: +33 (0) 241537001
L.M.C.

39 Rue des Freres-Lumiere
BP 22
69680 CHASSIEU Cedex
Contact: Patrick Minvielle
Tel: +33 (0) 472477400
Fax: +33 (0) 472477411

## GERMANY

AUTOMATEN-TECHNIK
SCHREIERT GmbH
Alter Teichweg 63
22049 Hamburg
Contact: Andre Schreiert
Tel: +49 406918581
Fax: +49 406929194

## AUTOMATEN-TECHNIK

SCHREIERT GmbH
Niederlassung Süd
Baindterstraße 46/2
88255 Baienfurt
Contact: Herr Rommel
Tel: +49 75153028
Fax: +49 75153029

## GERMANY

## AUTOMATEN-TECHNIK

SCHREIERT GmbH
Hermann-Löns-Skr. 19
58730 Fröndenberg
Contact: Michael Scherzant
Tel: +492373399739
Fax: +49 2373399738

## S+M SCHALTGERÄTESERVICE GmbH

Niederlassung Rhein-Main
Max-Planck-Str. 6a
63486 Bruchköbel / Hessen
Contact: Reinhold Rogaleski
Tel: +49 618162160
Fax: +49 618162161

S+M SCHALTGERÄTESERVICE GmbH
Richard-Lucas Straße 3
41812 Erkelenz /Industriegebiet Ost
Contact: Stefan Mesch
Tel: +49 243196540
Fax: +49 243176137

## S+M SCHALTGERÄTESERVICE GmbH

Niederlassung Hannover
Breslauer Straße 64
30853 Langenhagen
Contact: Ralf Gaßmann
Tel: +495117246318
Fax: +495117246319

## ITALY

ESPERIA DISTRIBUZIONE s.r.I.
Via della Misericordia 45
20057 Vedano AI Lambro (MI)
Contact: Marco Porro
Tel: +39 0392495678
Fax: +39 0392495679

## ITALY

s.a.s. ERREMA di Temporiti \& C

Via dell'Industria 5-5/A
20094 Corsico MI
Contact: Felice Penzo
Tel: +39 0245869762
Fax: +39 0245869784
V.A.T. Srl

VENDING ASSISTANCE TEAM
VIA BENADIR, 14
20132 MILAN
ITALY
Contact: Mr. Franco Cantore
Tel: +39 0228040704 / +39 0245470928
Fax: +39 0228001971
V.M.V. S.r.I.

Via Ritonda 78/L
37047 S. Bonifacio (VR)
Contact: Marco Mion
Tel: +39 0456103288
Fax: +39 0456103289

## SPAIN

TRATECNICA S.A.
c/ Gonzalaz Davila, 20-2 Oplanta
Poligono Industrial De Vallecas
28031 Madrid
Contact: Andržs Martinez
Tel: +34 913802200 (Service Centre only)
Fax: +34 913802652
SISTEMAS ELECRONICOS de PAGO
C/ProgrŽs, 37
Pol Ind. La Ferreria
08110 Montcada 1 Reixac
Barcelona
Contact: Javier Pineda
Tel: +34 935647800

## GREAT BRITAIN

BRENT Electronic
Namco House, Acton Park Estate
The Vale, London W3 7QE
Contact: Peter Murphy
Tel: 02083246212
Fax: 02083246125

## GREAT BRITAIN

EUROCOIN LTD
Fortune House
Moxon Street
Barnet
Herts
Contact: Steve Smith
Tel: 02082753000
Fax: 02082753030

## EUROCOIN LTD

Fortune House
Moxon Street
Barnet
Herts
Contact: Steve Smith
Tel: 02082753000
Fax: 02082753030
MICRO ELECTRONIC SERVICES
7 Aircraft Esplanade
Farnborough
Hampshire GU14 6TG
Contact: Mike Clokie
Tel: 01252375302
Fax: 01252541615

## NORWAY

## ELEKTRONISKE BETALINGS SYSTEMER

Peder Sletners vei 2
Postboks 502
N 1411 Kolbotn
Contact: Svein Atle Storvand
Tel: +4766805020
Fax: +47 66806371

## FINLAND

MECSEL
OY Soittagantie 1
00420 Helsinki
Contact: Seppo Sarrivaara
Tel: +3589700 18620
Fax: +358 970018622

## BELGIUM

L.M.C.

PLASSTRAAT 13
1860, MEISE
Tel: +32 22681369
Fax: +32 22686502

## HELPING YOU DELIVER

YOUR REPRESENTATIVE

